<s id="ekquk"><div id="ekquk"></div></s>
<small id="ekquk"></small>
<div id="ekquk"><button id="ekquk"></button></div>
<div id="ekquk"><button id="ekquk"></button></div><div id="ekquk"><wbr id="ekquk"></wbr></div><small id="ekquk"><wbr id="ekquk"></wbr></small>
<small id="ekquk"><wbr id="ekquk"></wbr></small>
<div id="ekquk"><wbr id="ekquk"></wbr></div>
<div id="ekquk"><button id="ekquk"></button></div><div id="ekquk"><button id="ekquk"></button></div><div id="ekquk"><button id="ekquk"></button></div>
<div id="ekquk"><button id="ekquk"></button></div>
視頻      在線研討會
半導體激光器 激光切割 激光器
技術中心
單波長1300納米光源實現多色深層的三光子成像
材料來源:Coherent高意激光           錄入時間:2022/12/13 23:44:51

熒光蛋白和探針的三光子(3P)激發目前引起了人們的極大興趣,尤其是在神經科學應用領域。正如 Chris Xu 和其他研究人員所證實的那樣,一個重要原因是用于三光子激發的1300 nm 和1700 nm 波長窗口帶來更深的穿透深度。

三光子激發還可以提供比雙光子激發更高的信噪比,并且幾乎沒有離焦熒光。這就可以穿透> 1 mm 厚的大腦皮層,在活體小鼠大腦中進行更深的成像。

同樣重要的是,1300 nm 波長符合綠色熒光蛋白和探針(如葡聚糖)的三光子激發能量要求,而 1700 nm 可用于激發更長波靶向,如 tdTomato。

一些研究人員希望同時激發多個探針以對哺乳動物大腦進行更復雜的探究。這種信息豐富的數據可以加速研究人員了解神經連接和活動與重要功能之間關系的進程。

使用兩種激發波長可以同時對短波和長波探針進行成像。但是,這有一些限制。首先,產生兩種波長的光束并在顯微鏡中合并它們會很復雜(而且成本更高)。然后是功率負荷問題;使用兩個激光源來激發活體組織意味著要在樣品上使用兩倍的激光功率。此外,直到最近,還沒有針對 1300 nm 或 1700 nm 的簡單(即“一體化”)光源,因此研究人員通常會使用 1040 nm 左右的激光來泵浦可調諧 OPA 產生 1300 nm 或 1700 nm。

但是兩種發展的結合使得短波長和長波長探針的三光子激發變得更加簡單,從而可以被更廣泛的用戶所接受。

1300 nm 激發長波探針

最近的幾項三光子成像研究表明,1300 nm 可用于激發綠色和紅色熒光探針。然后使用過濾器在兩個相機中分別檢測來自兩個探針的光。例如Timo van Kerkoerle 和他的博士生 Marie Guillemant 使用 Monaco 和 Opera-F 產生 1300 nm 激光,演示了通過三光子激發在小鼠前額葉皮層中同時激發葡聚糖和 tdTomato 標記的中間神經元(如圖)。此處的 z 堆棧圖像顯示,紅移探針激發信號甚至在深度約為 1 mm 時也很顯著。

數據由 Timo van Kerkoerle 博士和 Marie Guillemant 提供,Neurospin,CEA Saclay。

數據由 Timo van Kerkoerle 博士和 Marie Guillemant 提供,Neurospin,CEA Saclay。

圖 小鼠前額葉皮層中葡聚糖(綠色)和 tdTomato (紅色)標記的中間神經元的三光子成像,深度約為 1 mm。

Chris Xu 在 2021 年發表了一篇關于多色熒光團單波長三光子激發的文章,感興趣的讀者可以點擊閱讀原文進行了解。

許多常用的紅色熒光分子成像以前通常使用 1700 nm 激發到最低能態,這項工作表明這些常用的紅色熒光分子也可以在 1300 nm 激發到更高能量電子態。這種新的激發機制允許僅使用 1300 nm 激光在小鼠大腦中進行雙重綠色和紅色三光子熒光成像。

我們相信 Timo van Kerkoerle 和 Chris Xu 的這些發現顯然會對成像和功能性熒光探針的三光子激發的未來發展方向產生影響。

一體化 1300 nm 脈沖光源

新近推出的Coherent Monaco 1300 一體化激光器,為三光子激發提供了 1300 nm 飛秒光源。由于三光子圖像亮度與激光峰值功率的三次方成正比,這款激光器的短脈沖寬度和高峰值功率的特點,非常適合三光子成像。

  1. 簡單易用的自動化光源,脈沖寬度小于 50 fs。

  2. 高達 2.5 W 的功率輸出,可選擇 1、2 或 4 MHz 重復頻率,支持快速圖像采集。

  3. 高質量(M2 <1.3 ),在三維空間上提高顯微鏡的成像數量、成像效率和圖像分辨率。

  4. 一體化結構還包括兩個常用功能選項,從而簡化三光子成像并提高圖像亮度。

  • 提供動態功率衰減/門控的全功率控制(TPC)功能

  • 提供色散預補償以在樣品處獲得理想脈沖寬度的緊湊型脈沖壓縮器(CPC)

 

三光子成像的美好未來

使用單個激光源激發多個探針有望推動神經科學領域的發展,該技術基于跨皮層深層映射多種細胞類型,實現對大腦容量的快速、信息豐富的成像。三光子激發技術和相關機制的發展無疑有助于為正在決定選擇可調諧還是單波長三光子激發光源的研究人員提供指引,并突出(如 Coherent Monaco 1300 )解決方案的價值。

(文章轉載自網絡,如有侵權,請聯系刪除)


上一篇:綠光皮秒激光器助力系統級封裝 (S... 下一篇:基于時間透鏡系統的芯片級飛秒脈沖...

版權聲明:
《激光世界》網站的一切內容及解釋權皆歸《激光世界》雜志社版權所有,未經書面同意不得轉載,違者必究!
《激光世界》雜志社。



激光世界獨家專訪

 
 
 
友情鏈接

一步步新技術

潔凈室

激光世界

微波雜志

視覺系統設計

化合物半導體

工業AI

半導體芯科技

首頁 | 服務條款 | 隱私聲明| 關于我們 | 聯絡我們
Copyright© 2024: 《激光世界》; All Rights Reserved.
国产女人好紧好爽|欧美综合缴情五月丁香|jizjizjiz 日本老师水多|2021亚洲国产成a在线|亚洲成a人片在线观看天堂无码
<s id="ekquk"><div id="ekquk"></div></s>
<small id="ekquk"></small>
<div id="ekquk"><button id="ekquk"></button></div>
<div id="ekquk"><button id="ekquk"></button></div><div id="ekquk"><wbr id="ekquk"></wbr></div><small id="ekquk"><wbr id="ekquk"></wbr></small>
<small id="ekquk"><wbr id="ekquk"></wbr></small>
<div id="ekquk"><wbr id="ekquk"></wbr></div>
<div id="ekquk"><button id="ekquk"></button></div><div id="ekquk"><button id="ekquk"></button></div><div id="ekquk"><button id="ekquk"></button></div>
<div id="ekquk"><button id="ekquk"></button></div>